

Lora und ähnliche Funktechniken IoT-Konnektivität

Helmut Tschemernjak

IoT

Alles wird vernetzt

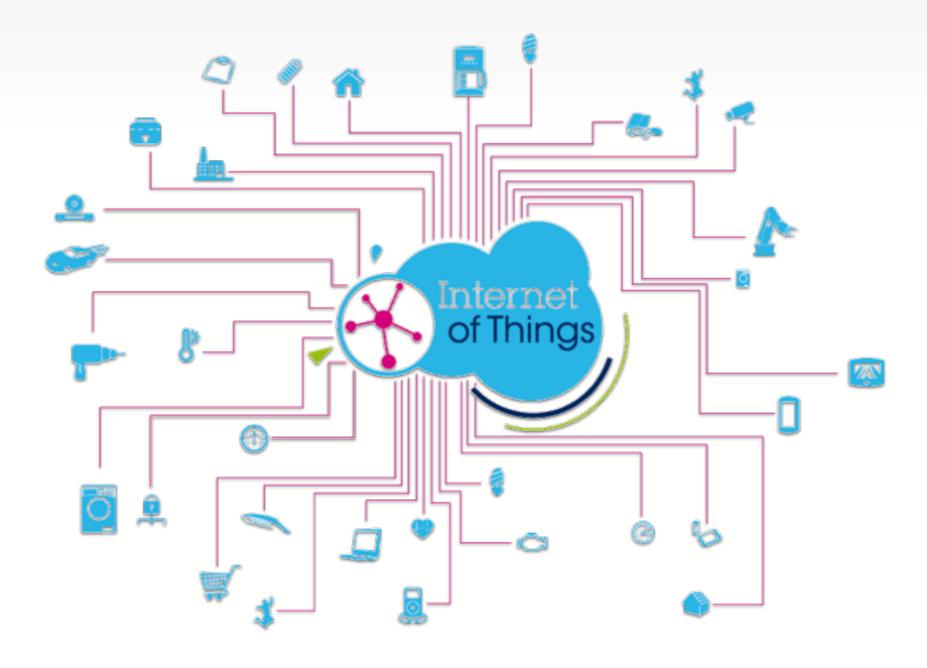


Bild von ST

Funktechniken

Funkprotokoll	Datenrate	Reichweite	Strom mA	Frequenz	Kosten
WLAN	> 10 Mbit	ca. 20 m	80 mA	2,4 GHz	teuer
Bluetooth LE	1 Mbit	ca. 10 m	15 mA	2,4 GHz	teuer
Bluetooth LR	0,100 Mbit	ca. 100 m	30 mA	2,4 GHz	sehr teuer
Zigbee	0,250 Mbit	ca. 30-65 m	15 mA	2,4 GHz (und 868 MHz)	teuer
Z-Wave	0,040 Mbit	ca. 30 m	36 mA	868 MHz	teuer
EQ-3, QIVICON Proprietäre Protokolle	0,500 Mbit (1-500 kbit)	ca. 30 m	20 mA	868 MHz	billig
DECT ULE	1 Mbit	ca. 50-100 m	40 mA	1,9 GHz (Reserviert für DECT)	teuer (wenige Anbieter)
LoRa Long Range	< 1 kbit	max. 10 km	20 mA Übertragungsdauer!	868 MHz (und 433 MHz)	teuer (benötigt Router)
2G/3G	> 10 kbit	max. 35 km	2000 mA	900 MHz (und 1800 MHz)	teuer (SIM Karte)
6LoWPAN IPv6 mesh network	_	_	_	2,4 GHz (und 868 MHz)	teuer (benötigt Router)

Funktechniken

...

Auswertung

2,4 GHz Funk

kleine Reichweite

2G/3G

Telekom SIM Karten erforderlich

433 MHz
nicht reguliert, ziemlich "busy"

868 MHz

auch Sub-GHz/ISM-Band genannt sehr interessant

Funkfrequenzen

ISM-Band ist weltweit reguliert

Land	Frequenz	Sendeleistung
EU	868 MHz	14 dBm
USA	915 MHz	14 dBm
Japan	920 MHz	14 dBm
China	470 - 510 MHz	17 dBm

Funk für Sensoren

Funktechnik für Sensoren?

Reichweite

Mehrere Wände/Etagen müssen funktionieren

Außenbereich: externe Objekte, Tore, Boote, PKWs, Garten, ...

Landwirtschaftliche Anwendungen über große Entfernungen

Überwachung von technischen Anlagen

Stromverbrauch

Batteriebetrieb über Jahre hinweg muss möglich sein

Kosten

Geringe Betriebskosten ohne Mobilfunkgebühren Geringe Kosten pro Sensor bzw. für die Gesamtlösung

LoRa

Bild von Semtech

LoRa

LoRa-Technologie

- LoRa (Long Range)
 - wenig Stromverbrauch
- Semtech USA

Hersteller der LoRa-Chips (Varianten für Client und Server)

LoRaWAN Protocol

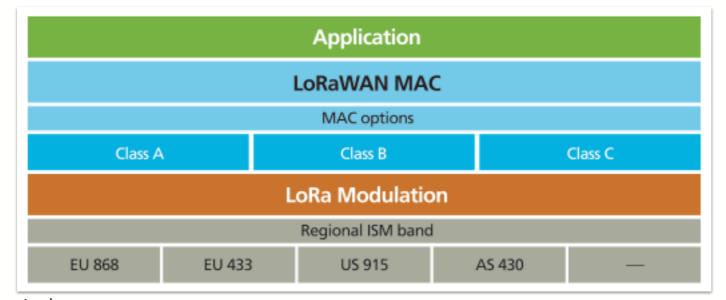
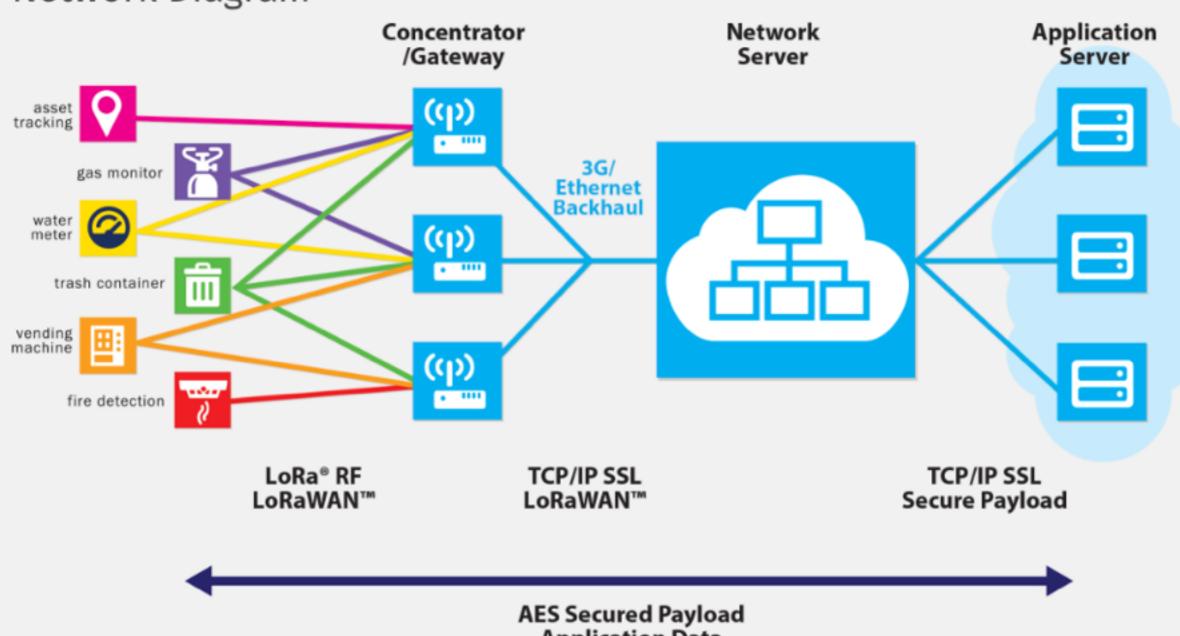



Bild von Semtech

Semtech

Network Diagram

Application Data

Funk-Grundlagen

Grundlagen

Niedrigere Frequenzen

Bessere Durchdringung bei gleicher Leistung

Antenne

Wellenlänge λ (griechisch: Lambda)

Bei 868 MHz reichen 8,5 cm Draht für eine Lambda/4 Antenne

Bei 433 MHz sind es 17 cm Draht für eine Lambda/4 Antenne

Sendeleistung dBm (Dezibel Milliwatt)

Leistungspegel sind in logarithmischer Form, um sowohl sehr große als auch sehr kleine Leistungsangaben einfach handhaben zu können

Funk-Grundlagen II

Grundlagen dB

Leistungspegel in dBm

 $Lp (dB) = 10 log_{10} (P1/P2)$

P1 = betrachtete Größe

P2 = Bezugsgröße

dBm (Dezibel Milliwatt)

Spannungspegel in dBu

dBu (Dezibel Volt)

Lu	(dB)	=	20	log) 10 (P1/	P2)
			(D			111	

Hinweis:

dB's können auch einfach verrechnet werden:

Eingang 10 dB, Verstärker 6 dB, Kabeldämpfung -2 dB = 4 dB Gewinn.

Weitere Infos:

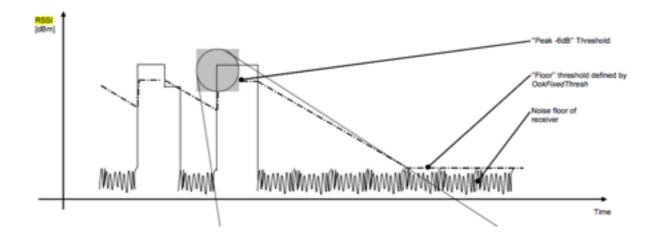
Wiki: https://de.wikipedia.org/wiki/Leistungspegel

EEVblog: https://www.youtube.com/watch?v=mLMfUi2yVu8

Funk-Grundlagen II

RSSI

Indikator für die Empfangsfeldstärke bei Funk Received Signal Strength Indication Beispiel RSSI (Entfernung vom Sender)


Entfernung	RSSI
zero	0
1 m	-25
50 m	-70
1000 m	-110

SNR

Signal-Rausch-Verhältnis

Preamble

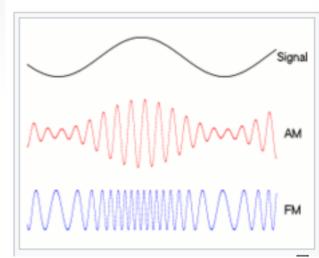
Mustersignal (Header-Pattern) Leitet Datenpaket ein

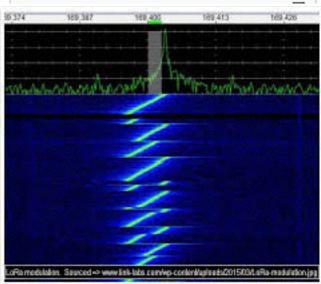
Modulationen

Modulation von Signalen

Bekannte Modulationsverfahren

Beispiel: Texas Instruments Radio-Chip: CC1101 FSK, 2-FSK, 4-FSK, GFSK, MSK, OOK viele Chip Anbieter


LoRa-Modulation


Spread Spectrum Modulation

Chirp Spread Spectrum (CSS)

Bekannt aus der Radartechnik

Chip Anbieter (nur Semtech!)

https://en.wikipedia.org/wiki/Chirp_spread_spectrum

LoRa-Modulationen

....

Spreadingfaktor

Verteilung der Nutzdaten SF7-SF12 (nur bei LoRa) Wichtig für:

- Reichweite
- Stromverbrauch
- Anzahl der Pakete/Knoten

Bandbreite

Standard LoRa 125 kHz
Zusätzlich 250 kHz, 500 kHz
(nicht LoRaWAN kompatibel)

Spreading- faktor	Übertragungsdauer 64 bytes (bei Bandbreite 125 kHz)	Reichweite getestet
SF7	120 ms	100-500 m
SF8	220 ms	
SF9	390 ms	> 1 km
SF10	700 ms	
SF11	1320 ms	> 2 km
SF12	2470 ms	

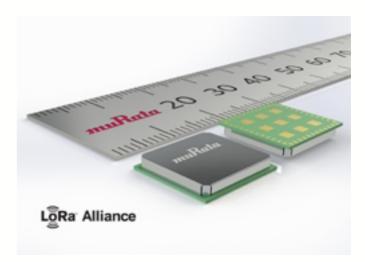
LoRa-Module

LoRa-Funkmodule

- RFM95-Modul (16x16 mm)

 Semtech SX1276 basierend (868 MHz)

 SPI Anschluss, DIO0-DIO5, 1,8-3,7 V
- Murata-Modul (12x12 mm)


 Semtech SX1276 basierend (868 MHz)

 STM32L0 MCU 192 kB Flash, 20 kB RAM
- Microchip-Modul (17x27 mm)

 UART Interface (433/868 MHz)

 LoRaWANTM Class A protocol



LoRa-Module

LoRa-Funkmodule

STM32 B-L072Z-LRWAN1

Enthält Murata LoRa-Modul Inklusive ST-Link Interface SMA-Antenne, u.FL-Option

Adafruit Feather M0/LoRa

Atmel D21

Drahtantenne (extern 8,2 cm)

LoRa-Concentrator

LoRa-Concentrator

MultiTech

Schlüsselfertige Gateway-Lösung LoRA-Modulkarte (868 MHz) Ethernet und SMA-Antennenanschluss

IMST GmbH

Board mit SemTech SX1301 Chipsatz Gateway mit Raspberry PI (Beispiel) SPI-Interface, u.FL-Antennenanschluss

LoRa-Geräte

LoRa-Gerätekategorien

Knoten

Nur eine Frequenz zur Zeit 868.1 oder .2 oder .3 MHz

Nur ein Spreadingfaktor zur Zeit SF7 oder SF12

Nicht immer auf Empfang (bei Batteriebetrieb)

Protokoll LoRaWAN Class-A und Class-B (min. 60 kB Treiber)

Basisstation

Gleichzeitiger Empfang auf 8 Kanälen

Gleichzeitiger Empfang von SF7-SF12 (automatisch pro Paket)

Protokoll LoRaWAN Class-C

Treiber

...

Softwaretreiber

RadioHead

Unterstützt RFM95/SX1276 LoRa Module

Einfacher Treiber, Arduino kompatibel in C++

Einfaches Senden / Empfangen von Paketen

Semtech SX1276 Treiber

Unterstützt SX1206 Reference Boards

Umfangreicher Treiber unter mbed (C++) oder auf GitHub (C version)

Einfaches Senden / Empfangen von Paketen

Anpassungen für Murata LoRa und RFM95-Module in Arbeit (von mir!)

Protokolle

Protokolltreiber

Semtech LoRa-Gateway

Open Source auf GitHub, erfordert einen Concentrator und Serversoftware

Alternative Entwicklung

Verwendung des Semtech SX1276 Chip Treibers

Funktion mit einfachen LoRa-Modulen als Knoten und Basis

Funktion mit dem LoRa-Concentrator als Basis (parallele Kanäle & SF's)

Optimiert für geringen Stromverbrauch, Funknetze (wenig Kollisionen)

Gesicherte Datenübertragung (Empfangsbestätigung, Verschlüsselung)

Unabhängig von LoRa (auch für 868 MHz, 2,4 GHz Funk geeignet)

Arduino Hannover

Gemeinsame Projekte

Funktechnik für den Hausgebrauch

Eine coole Sache

LoRa-Modul

Wir stehen mit Modulen und Software nur Seite (Arduino, Pl und mbed) Eigene Protokolltreiber (unabhängig von LoRaWAN)

LoRa-Server

PI-basierend mit einfachem LoRa-Modul und/oder -Concentrator

LoRa-Sensor

Da gibt es viele Ideen und Möglichkeiten

Arduino Hannover

Gemeinsame Projekte II

Gemeinsam

Das Unmögliche möglich machen

Maker Faire Hannover

Da wollen wir zeigen, was wir drauf haben

Vielen Dank!